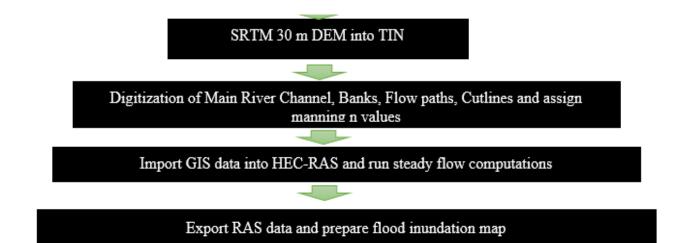
### Report on the "Satellite enhanced snowmelt flood and drought predictions for Kabul River basin with surface and groundwater modeling" project

### **Executor: Rabbia Murtaza**

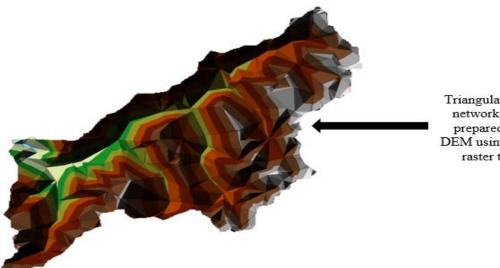
# 1) Hydrological modelling of Chitral watershed

**Title:** Chitral Basin Watershed Modeling using Arc Hydro based on DEM submitted in peer reviewed impact factor journal


### Abstract

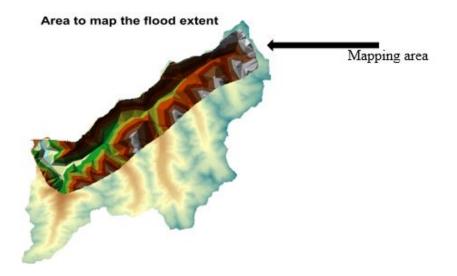
In this paper, DEM and stream network are applied to model the Chitral basin watershed in Pakistan with the help of Arc Hydro Tools. The effects of Digital Elevation Model (DEM) reconditioning and threshold value of stream on the accuracy and correctness of watershed modelling and simulation were assessed. To extract drainage networks from DEM, many hydrological algorithms were prepared and for this purpose, D8 algorithm is used on wide scale to define drainage networks and catchments. Regression analysis was also performed on the total catchments and stream threshold values. It is concluded that threshold values of flow accumulation impacts the drainage network extraction; hence resulting in power function y = axb between the total catchments and threshold value. Lower stream threshold value results in more detailed stream network and leads to catchment accuracy.

### 2) Flood inundation mapping of Golain valley in Chitral using HEC-RAS


Golain valley is located in the northeast of main town Chitral at a distance of 25 KM between  $35^{\circ}$ 53' 08.02" N 72<sup>0</sup> 00' 18.88" E latitudes. The main villages of the valley are Rogheli, Istor, Birmogh, Bobakha and Lower Golain (Golain Payeen). There are about 210 households with a total population of about 1700 people in Golain valley. The total length of main Golain valley is nearly 30 KM. It is located on the eastern bank of main Chitral River at an elevation of 7200ft asl. The terrain of the valley is comprised of lofty mountains with steep slopes and deep gorges. The valley is famous for its trout fishes and sweet potato. Subsistence agriculture, orchard raising and livestock are the predominant sources of livelihood of the local population. Besides, presence of glaciers, lakes, rich forests and associated biodiversity also attracts large number of nature loving tourists (both national and international); and as such tourism also supplement local livelihood seasonally. At present due to initiation of mega infrastructural project of Hydle Power station, offfarm labor has also emerged as a significant mean of livelihood for the local communities of Golain. Majority of the local population in Golain belongs to Sunni sect of Islam. Golain valley has been subject to natural disasters since 1970s (available records). However, the intensity and severity of the disasters have increased in recent years especially from 2000 onward. The first GLOF event in Golain valley was witnessed in 1989. In 2000 a heavy flood originated from Golain valley (in Rogheli Gol) and washed away nearly 40 houses in the downstream villages, including village of Koghozi on Chitral Mastuj Road. The link road of valley was also completely destroyed by the floods of 1987, 1989, 2000, 2004, 2008 and 2010.

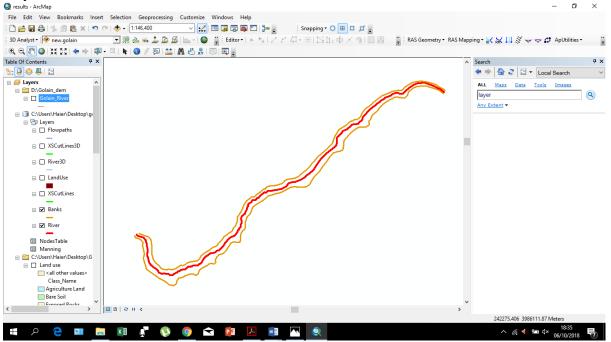
**Methodology** In this study the hydraulic modelling was performed using HEC-RAS and steady flow analysis was computed for main golain river. The datasets that were used in this study are SRTM DEM 30m, flow data and landuse shapefile for golain valley. The detailed methodology is mentioned below;



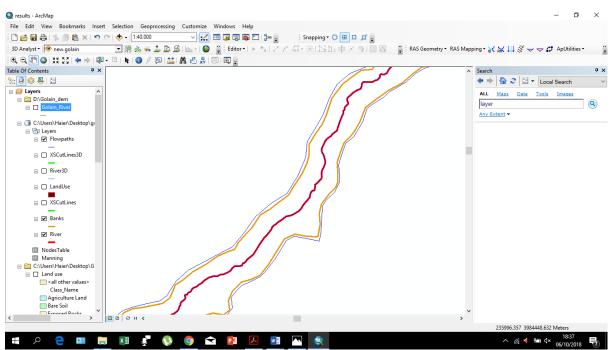

# **Raster to TIN**

The requirement for HEC-RAS to produce flood plain maps is TIN which stands for triangulated irregular network. So, for that raster dataset was converted into TIN, shown below;

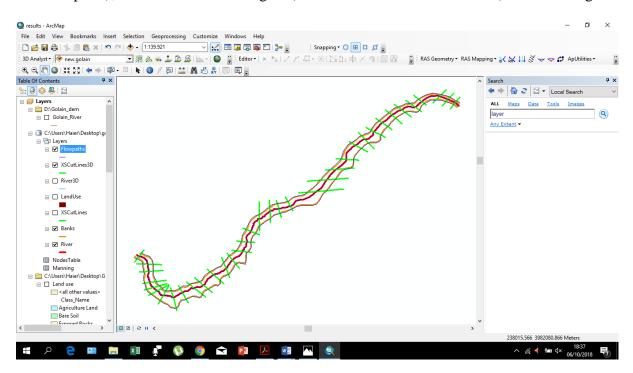



Triangulated area network (TIN) prepared from DEM using tool of raster to tin

**Study Area Identification** 



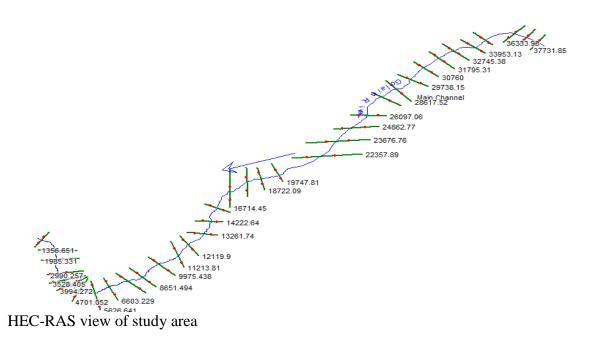

# Digitization


The river centerline is used to establish the river reach network for HEC-RAS. First step was digitization of river. River was digitized from upper stream and ended at lower stream, after then tributaries were digitized in the same sequence as river. River code and Reach code were also assigned. Bank lines are used to distinguish the main channel from the overbank floodplain areas. Information related to bank locations is used to assign different properties for cross-sections. For example, compared to the main channel, overbank areas are assigned higher values of Manning's n to account for more roughness caused by vegetation. Creating bank lines is similar to creating the channel centerline, but there are no specific guideless with regard to line orientation and connectivity - they can be digitized either along the flow direction or against the flow direction, or may be continuous or broken.



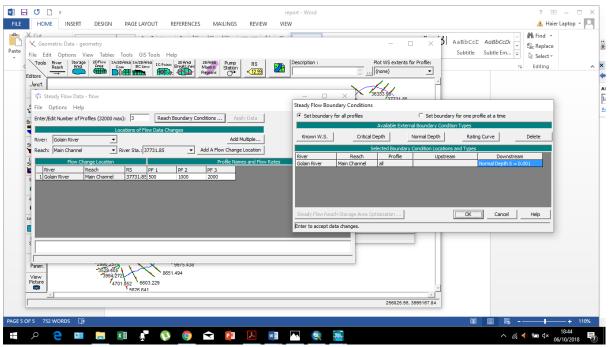
The flowpath layer contains three types of lines: centerline, left overbank, and right overbank. The flowpath lines are used to determine the downstream reach lengths between cross-sections in the main channel and over bank areas. Flow paths were digitized by same procedure as creating banks




Cross-sections are one of the key inputs to HEC-RAS. Cross-section cutlines are used to extract the elevation data from the terrain to create a ground profile across channel flow. The intersection of cutlines with other RAS layers such as centerline and flow path lines are used to compute HEC-RAS attributes such as bank stations (locations that separate main channel from the floodplain), downstream reach lengths (distance between cross-sections) and Mannings n.



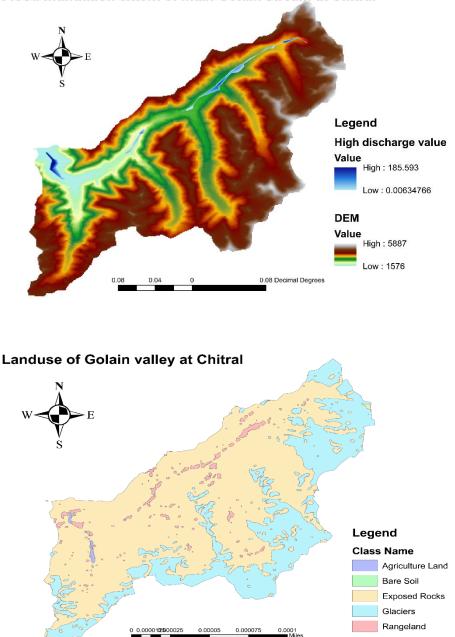
| Tal |                          |                |                            |            |            |          |                              | ) 🖸 🎾 💡                      |          |           |                      |                      |                      |                                                  | Π× | - 0 | ApUtilities |
|-----|--------------------------|----------------|----------------------------|------------|------------|----------|------------------------------|------------------------------|----------|-----------|----------------------|----------------------|----------------------|--------------------------------------------------|----|-----|-------------|
| :   | • =                      | <b>F</b> a 🔂 🛛 | 2 🖉 🗶                      |            |            |          |                              |                              |          |           |                      |                      |                      |                                                  |    |     |             |
| XS  | CutLines3D               |                |                            |            |            |          |                              |                              |          |           |                      |                      |                      |                                                  | ×  |     |             |
| Г   | Shape *                  | OID *          | Shape_Length               | XS2DID     | HydroID    | Station  | River                        | Reach                        | LeftBank | RightBank | LLength              | ChLength             | RLength              | NodeName                                         | ^  |     |             |
| F   | Polyline Z               | 109            | 1299.513526                | 150        | 227        | 37731.85 | Golain River                 | Main Channel                 | 0.392157 | 0.607742  | 708.8331             | 675.9361             | 661.9802             | <nul⊳< td=""><td></td><td></td><td></td></nul⊳<> |    |     |             |
|     | Polyline Z               | 110            | 1438.791403                | 151        | 228        | 37055.91 | Golain River                 | Main Channel                 | 0.362111 | 0.629131  | 862.4237             | 721.9332             | 712.0787             | <null></null>                                    |    |     |             |
|     | Polyline Z               | 111            | 1594.859199                | 152        | 229        |          | Golain River                 | Main Channel                 | 0.27608  | 0.60174   | 1005.618             | 1652.732             | 2085.088             | <null></null>                                    |    |     |             |
|     | Polyline Z               | 112            | 1342.209779                | 153        | 230        |          | Golain River                 | Main Channel                 | 0.180534 | 0.575003  | 697.3526             | 728.1194             | 863.1415             |                                                  |    |     |             |
|     | Polyline Z               | 113            | 1605.777749                | 154        | 231        |          | Golain River                 | Main Channel                 | 0.137328 | 0.692425  | 1282.024             | 1207.741             | 1030.109             |                                                  |    |     |             |
|     | Polyline Z               | 114            | 1818.428529                | 155        | 232        |          | Golain River                 | Main Channel                 | 0.368903 | 0.726144  | 954.7895             | 950.0762             | 923.656              |                                                  |    |     |             |
| Н   | Polyline Z               | 115            | 1775.229591                | 156        | 233        |          | Golain River                 | Main Channel                 | 0.395358 | 0.772829  | 978.5661             | 1035.305             | 1050.304             |                                                  |    |     |             |
| H   | Polyline Z               | 116            | 1662.125836                | 157        | 234        |          | Golain River                 | Main Channel                 | 0.272984 | 0.758436  | 908.2907             | 1021.851             | 1079.846             |                                                  |    |     |             |
|     | Polyline Z               | 117            | 1812.845541                | 158        | 235        |          | Golain River                 | Main Channel                 | 0.233138 | 0.702411  | 1504.353             | 1120.631             | 976.0917             |                                                  |    |     |             |
|     | Polyline Z               | 118            | 1936.782891                | 159        | 236<br>237 |          | Golain River                 | Main Channel                 | 0.367719 | 0.773534  | 763.9234             | 975.7158<br>1544.749 | 1071.856             |                                                  |    |     |             |
|     | Polyline Z               | 119            | 1780.521671                | 160<br>161 | 237        |          | Golain River<br>Golain River | Main Channel<br>Main Channel | 0.360395 | 0.861566  | 902.9455             | 1234.291             | 1658.911             |                                                  |    |     |             |
|     | Polyline Z<br>Polyline Z | 120            | 1907.383572<br>2408.381814 | 162        | 230        |          | Golain River                 | Main Channel                 | 0.307121 | 0.811481  | 1570.995             | 1186.01              | 1301.533<br>1223.55  |                                                  |    |     |             |
|     | Polyline Z               | 121            | 3469.306996                | 162        | 239        |          | Golain River                 | Main Channel                 | 0.307121 | 0.677521  | 1192.114             | 1318.864             | 1479.586             |                                                  |    |     |             |
|     | Polyline Z               | 122            | 3801.321103                | 164        | 240        |          | Golain River                 | Main Channel                 | 0.323101 | 0.774233  | 1447.644             | 2184.795             | 2387.506             |                                                  |    |     |             |
|     | Polyline Z               | 125            | 1330.391177                | 166        | 243        |          | Golain River                 | Main Channel                 | 0.147229 | 0.64226   | 1067.651             | 1025.724             | 901.0113             |                                                  |    |     |             |
|     | Polyline Z               | 126            | 1528.326385                | 167        | 244        |          | Golain River                 | Main Channel                 | 0.272373 | 0.795257  | 948.8207             | 840.4836             | 709.9244             |                                                  |    |     |             |
|     | Polyline Z               | 127            | 1896.840452                | 168        | 245        |          | Golain River                 | Main Channel                 | 0,197973 | 0.667591  | 1099.934             | 1167,154             | 1084.836             |                                                  |    |     |             |
|     | Polyline Z               | 128            | 2434.263527                | 169        | 246        |          | Golain River                 | Main Channel                 | 0.185128 | 0.5379    | 693.9787             | 1445.279             | 1787.627             |                                                  |    |     |             |
|     | Polyline Z               | 129            | 1523.194395                | 170        | 247        |          | Golain River                 | Main Channel                 | 0.252317 | 0.7549    | 859.787              | 1046.527             | 1114.611             |                                                  |    |     |             |
|     | Polyline Z               | 130            | 1527.673461                | 171        | 248        | 14222.64 | Golain River                 | Main Channel                 | 0.225672 | 0.699762  | 949.1771             | 960.9005             | 903.1741             | <nui⊳< td=""><td></td><td></td><td></td></nui⊳<> |    |     |             |
|     | Polyline Z               | 131            | 1663.546543                | 172        | 249        | 13261.74 | Golain River                 | Main Channel                 | 0.205646 | 0.736867  | 1904.2               | 1141.844             | 705.6419             | <nul></nul>                                      |    |     |             |
|     | Polyline Z               | 132            | 1636.923767                | 173        | 250        | 12119.9  | Golain River                 | Main Channel                 | 0.311359 | 0.804431  | 1059.119             | 906.0891             | 732.6423             | <null></null>                                    |    |     |             |
|     | Polyline Z               | 133            | 1827.736404                | 174        | 251        | 11213.81 | Golain River                 | Main Channel                 | 0.171139 | 0.718742  | 885.2325             | 1238.369             | 1410.898             | <null></null>                                    |    |     |             |
|     | Polyline Z               | 134            | 1883.790904                | 175        |            |          | Golain River                 | Main Channel                 | 0.240753 | 0.789751  | 1445.295             | 1323.944             | 1254.631             |                                                  |    |     |             |
|     | Polyline Z               | 135            | 1939.720002                | 176        | 253        |          | Golain River                 | Main Channel                 | 0.24999  | 0.699546  | 700.6231             | 897.9739             | 866.151              |                                                  |    |     |             |
|     | Polyline Z               | 136            | 2043.026087                | 177        | 254        |          | Golain River                 | Main Channel                 | 0.20016  | 0.837792  | 1594.655             | 1150.292             | 894.5769             |                                                  |    |     |             |
|     | Polyline Z               | 137            | 1671.567082                | 179        | 255        |          | Golain River                 | Main Channel                 | 0.234481 | 0.814805  | 1231.801             | 976.588              | 772.1385             |                                                  |    |     |             |
|     | Polyline Z               | 138            | 1971.574117                | 180        | 256        |          | Golain River                 | Main Channel                 | 0.115121 | 0.855101  | 1550.584             | 925.5886             | 436.4087             |                                                  |    |     |             |
|     | Polyline Z               | 139            | 1731.599811                | 182        | 257        |          | Golain River                 | Main Channel                 | 0.201247 | 0.705232  | 963.6354             | 706.78               | 412.74               |                                                  |    |     |             |
|     | Polyline Z               | 140            | 1912.515028                | 183        | 258        |          | Golain River                 | Main Channel                 | 0.144581 | 0.644066  | 576.5515             | 465.8671             | 295.1472             |                                                  |    |     |             |
|     | Polyline Z<br>Polyline Z | 141            | 1972.993924<br>2036.680858 | 185        | 259        |          | Golain River<br>Golain River | Main Channel                 | 0.087856 | 0.534867  | 964.3755<br>659.6722 | 1004.925<br>628.6802 | 926.0118<br>561.3232 |                                                  | ~  |     |             |
|     | Polvine /                | 142            | 20.36 6808581              | 186        | 2601       | 1985.331 | Golain River                 | Main Channel                 | 0 220816 | 0.564209  | h59 h7771            | h/8 h8021            | 561.3232             | <niii></niii>                                    |    |     |             |


**Importing Geometry data file into HEC-RAS** 

Then the data was imported to the Hec-RAS. Quality check was performed on the data to make sure no erroneous information was imported from GIS. All the geometric data was edited In the Geometric editor toolbar in Hec\_RAS



### Flow data and boundary conditions


Flows are typically defined at the most upstream location of each river/tributary, and at junctions. There are situations where you need to define flows at additional locations, so for this purpose following details were entered



# Mapping in Golain valley Chitral

After successfully running the steady flow computations in HEC-RAS we now export back this data into Arcmap for preparing maps, and the post processing of HEC-RAS.xml file is done through GeoRas. RAS mapping will create a bounding polygon, which basically defines the analysis extent for inundation mapping, by connecting the endpoints of XS Cut Lines.

After the analysis extent is defined, we are ready to map the inundation extent. The area with positive results (meaning water surface is higher than the terrain) is flood area, and the area with negative results is dry. All the cells in water surface grid that result in positive values after subtraction are converted to a polygon, which is the final flood inundation polygon.



# Flood inundation extent of main Golain stream at Chitral

### Conclusions

Steady flow simulation was performed in HEC-RAS. Three flood profiles were generated in this study that is low, medium and high. But only PF 3 with discharge of 2000 cusecs was used in computations. The flood extent map produced using HEC-RAS analysis represents a flood extent area on DEM. This is essential in planning mitigation/evacuation operations as it gives simple analysis on which settlements are going to be submerged and to what area should the population be relocated as it gives the extents of the flood coverage. Based on results produced in the wake of flood modeling, the authorities can plan mitigation strategies beforehand to lower the risk of flooding. Planning of evacuation operations will also be made easy with the aid of flood coverage maps.