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ABSTRACT
Mathematical simulation techniques have been used to study 
the subsurface water-lake system. The volume of the subsurface 
drain from the Syrdarya artesian basin (Kazakhstan) into the Aral 
Sea depression was computed subject to the geoinformation-
mathematical model of its hydrogeological conditions. Since the 
surface and subsurface (underground) water are interconnected, 
their movement has been measured during the undisturbed period 
(1960), the epignostic (1961–2014) period, and for forecasting 
problems for 2044 under two water withdrawal options. The first 
forecast option assumes the same withdrawal volume of subsurface 
water level which existed at the end of 2014. The second forecast 
option envisages the model assignment (from the start of 2015) of 
the water withdrawal in the production volumes of the subsurface 
water approved by the National Reserves Committee of the 
Republic of Kazakhstan. The simulation results showed that the 
technogenic factors in the explored area have a significant impact 
on the movement of the subsurface and surface water. Reduction of 
the Syrdarya and Amudarya rivers flows, production of subsurface 
water with multiple water-intake and unowned self-flowing 
wellbores promoted the desiccation of the Aral Sea. The proposed 
mathematical simulation technique used to assess the subsurface 
drain proved its efficiency and can be used for surveying the similar 
subsurface water-lake systems.

Introduction

Subsurface flow is one of the main lake water balance components. Its changes may impact 
the quantitative and qualitative composition of the lake water in a negative manner [1–3]. 
Mathematical simulation is one efficient technique to study the subsurface water-lake system.

Integrated surface and groundwater modelling are complex tools for interpreting the 
full water cycle balance [4]. The interchange of the water-bearing soil and lakes is simulated 
through various hydrogeological units [4–12]. The efficient use of water resources in the 
lake regions is assessed with subsurface drain models [13–15]. Numerical simulation allows 
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researchers to forecast the impact of climate variations on the water balance of bodies of 
water [16–19]. The mathematical subsurface drain models were established to identify 
causes and changes of a lake’s salinity [20,21]. Human activities, such as agricultural work, 
significantly impact the subsurface water and present a potential threat to the lake’s condi-
tion. The mathematical hydrogeological models were developed for these types of territories 
with anthropogenic changes [17,19,22–29]. Empirical or experimental surveying methods 
are complicated in many remote areas, because of difficulties in collecting detailed field 
data. Therefore, mathematical simulations are used both for collected field data and for 
prediction analysis [30–33].

The aim of this article is to improve the mathematical simulation techniques used to 
assess the subsurface drain to the Aral Sea depression, a no-flow salt lake in Central Asia. 
Over time, a number of scientists from various countries have dedicated their efforts to the 
problems of the Aral Sea region [34–43].

The Amurdarya and Syrdarya rivers are the main rivers in the Aral Sea (Figure 1). The 
Syrdarinski artesian basin represents a complex multiple-layer fluid-flow system with sub-
surface, underground water interchangeable system connected to the Aral Sea. The basin 
spreads from the mountain highlands in the east and south-east to the Aral Sea in the west 
and is located in the territory of two countries – Kazakhstan and Uzbekistan (Figure 1).

Studies of the devastating shrinkage of the Aral Sea and the subsurface water-salt drain 
directly in the depression were initiated by V.N. Lvov [44] and I.M. Chernenko [45], who 
published a number of articles from 1965 to 1972, as well as by N. S. Pashkovskiy, who 
built a model of the head water discharge across the low-permeable layers using the EHDA 
(electrohydrodynamic analogy) technique in 1969 [46]. This research was further continued 
by U.M. Akhmedsafin, J.S. Sydykov, S.M. Shapiro, N.N. Khodzhibayev, I.S. Zektser, V.I. 
Poryadin, T.N. Vinnikova, N.V. Kalmykova, and V.P. Zolotarev between 1975 and 1980 
[47–49].

Figure 1. research area: aral lake sub-basin with Syrdarinski artesian basin.
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The basin territory was studied and measured with several mathematical models of 
hydrogeological conditions in the basin of the Aral Sea [50], the Eastern Aral Sea region 
[51,52], and the Kyzyljarmin Field of subsurface water [53,54].

These models were used to solve a certain range of hydrogeological problems and, in 
particular, they assessed the subsurface drain in the Aral Sea. According to the research data, 
the subsurface influx volume in the depression varied from 0.5 to 5.5 km3/year. Veselov and 
Panichkin suggested using methods of geoinformational-mathematical simulation for the 
study of hydrogeological conditions of Eastern Aral Sea sub basin area [51].

Decision-making on the rational use of subsurface water resources, their protection 
against depletion and pollution, and assessment of the impact on the transboundary sub-
surface drain was assisted by the regional geoinformation-mathematical hydrogeological 
model of the Syrdarya artesian basin [52]. Related work was completed at the Hydrogeology 
and Geoecology Institute named after U.M. Akhmedsafin (in Almaty, Kazakhstan). In our 
current model we adjusted and refined the previous models, assessed the current subsurface 
drain of the Aral Sea, and predicted changes up to the year 2044.

Materials and methods

Input data

Figure 1 shows the border of the regional Syrdarya artesian basin model. The five main 
water-bearing geological layers singled out in the basin territory are the Neogene-Quaternary 
(N-Q), the Upper Eocene (P3

2
-sk), the Upper Turonian-Senonian (K2t2-sn), the Upper 

Albian-Cenomanian (K1al3-K2s) and the Lower-Middle Albian-Jurassic (K1al1-2-J) deposits. 
The water-bearing geological layers are split by three regional deposits of impermeable mate-
rial: the Paleogene (P), the Lower Turonian (K2t1), and the Lower-Middle Albian (K1al1-2). 
These are distributed throughout. There are also Chegan argillites in the north-western part 
of the described territory (P2-3cg) (Figure 2).

Schematization of the hydrogeological conditions

MapInfo 10 [55] and ArcGIS 10.0 [56] were selected as tools for creating the geoinforma-
tion model, and the Groundwater Modeling System GMS 9 [57] was selected to make the 
mathematical model.

Schematization of the hydrogeological conditions includes justification of the fluid-flow 
chart, selection of the analysis method and tools, and drawing up of the initial filtration 
flow chart. The schematization was based on the hydrogeological sections, hydrogeological 
maps, actual data, data on the water intake efficiency, subsurface and surface water behav-
iours and other data, as well as distribution maps for the water-enclosing, water-resistant 
and low-permeable deposits of various age and plots of their outcrops, and on the daily 
measurements of surface water movement.

The schematization allowed the region’s five water-bearing interconnected layers which 
flowed across four dividing low-permeable layers to be singled out.

The simulated region was approximated by the orthogonal uniform net in increments 
of 5000 m. The dimensionality plan of the grid is M × N = 232 × 162, while the sectional 
view of the grid is 22 units.
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The water movement processes were presented with the use of the corresponding 
boundary conditions and simulated assignment of the positive and negative areal water 
recharge. The northern, north-eastern, western and southern boundaries of the model 
for the Neogene-Quaternary water-bearing geological layers, as well as the Syrdarya River 
and the Amudarya River were approximated by the boundary conditions of Category I. 
These assume assignment of the subsurface water head, water saturated bearing geological 
layers. The eastern, western, southern, northern and the north-eastern boundaries for the 
Neogene-Quaternary suite, as well as the areas lacking water-bearing suites and the areas 

Figure 2. Schematic hydrogeological map of the Syrdarya artesian basin. distribution of groundwater: 
(1) aquifer of modern sediments, (2) aquifer of upper-Quaternary modern deposits (a) and sporadically 
flooded deposits (b), (3) aquifer of middle-upper-Quaternary deposits, (4) aquifer of middle-Quaternary-
modern deposits, (5) aquifer of the lower-middle-Quaternary deposits, (6) aquifer of neogenic-
Quaternary deposits, (7) aquifer of miocenic-Pliocenic deposits (a) and sporadically flooded deposits 
(b), (8) Sporadically flooded oligocenic deposits, (9) flooded upper-eocenic deposits of Saxaul suite, (10) 
Sporadically flooded Paleocenic-eocenic deposits, (11) maastrichtian aquifer deposits, (12) aquifer of 
Conyac-Campagne deposits, (13) aquifer of upper-turon-Senonian deposits, (14) aquifer of Cenomanian-
turon deposits, (15) Groundwater confined to Paleozoic deposits. the distribution of aquifugeous rocks: 
(16) aquifugeous non-separated Paleogenic deposits, (17) aquifugeous lower-turon deposits. (18) 
outputs of Paleozoic rocks to the surface. (19) outputs of Proterozoic rocks to the surface. (20) fault. 
(21) model outline.
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with tectonic faults were simulated as boundaries of Category II. These assume assignment 
of the subsurface water flow volume. The border over the Aral Sea contour was assigned 
as to its coastline position (Figure 3). The production of water intakes and infiltration 
of precipitation was schematized as a negative or positive areal recharge. Evaporation of 
subsurface water and the discharge in the lake depressions and in the Aral Sea across the 
bottom were assigned as the boundary conditions of Category III; reflecting the intercon-
nectedness of the hydrogeological unit with the environment. The subsurface water intakes 
were schematized as the negative time-varying areal supply. Production of the self-flowing 
wellbores was schematized as the boundary condition of Category III.

Model calibration

The model calibration was developed by using the inverse stationary and nonstationary 
methods.

Figure 3.  filtration scheme of the neogene-Quaternary water-bearing suite (1) line assigning the 
boundary conditions of Category I, (2) line assigning the boundary conditions of Category II, (3) areas 
with the lacking neogene-Quaternary water-bearing suite.
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The inverse stationary solution included an update of the areal subsurface water supply 
volume; discharge by evaporation from the open groundwater surface; spring drain; plant 
transpiration; update of the model parameters describing communication processes of sub-
surface water with the surface water objects – rivers, lakes, and water storages; selection of 
the influx and drain over the outer borders of the simulated region. The subsurface water of 
the Neogene-Quaternary and the Cretaceous geological layers is mainly fed in the piedmont 
areas (river detrital cones and areas of the Cretaceous outcrops on the daily surface), in the 
sand massifs, as well as in the irrigated areas with atmospheric precipitation and irrigation 
water. The pattern and balance surveys ascertained that the percent of annual precipitation, 
which helps to form the subsurface drain in the sand massifs, ranges from 10 to 15%.

The amount of water discharge underground cannot exceed the volume of the efficient 
atmospheric precipitation. This was one of the basic requirements in the application of the 
inverse stationary problem methodology.

Subsurface water is affected by the water loss, including evapotranspiration and lateral 
spring flow. On the model, these boundary conditions are assigned to be Category III.

The inverse non-stationary solution included the reproduction of the changing hydro-
geological conditions within the simulated area of the Syrdarya artesian basin from 1960 
to 2014. The model was also used to select the volume parameter values, to update the 
boundary conditions, and to simulate drying of the Aral Sea – decrease of its water level, 
reduction of its water area, changes of the subsurface drain volume, as well as the shrinking 
of its coast line. The production of multiple self-flowing wellbores and the time-varying 
water withdrawal from the Neogene-Quaternary and the Cretaceous water-bearing suites 
by the water-intake holes were also considered. Changes in the evaporation volume from 
the groundwater level were reproduced subject to the depth of its occurrence.

The results of the inverse solution allow us to conclude that the model sufficiently rep-
licated the existing hydrogeological conditions of the researched area.

Forecasts

The interconnectedness of the subsurface water with the surface water of the Aral Sea was 
assessed for both the undisturbed period (1960), and the epignostic (1961–2014) period. 
This data were used in order to forecast water changes and problems in the Aral Sea region 
for a period of 30 years, from 1 January 2015 to 31 December 2044.

The first forecast option assumed the same subsurface water withdrawal volume over 
the forecast period at the end of 2014 level. The second forecast option assumed the model 
assignment (from the start of 2015) of the water withdrawal volumes equal to the subsur-
face water reserves under the sum of A + B + C1 categories, which were approved by the 
National Reserves Committee of the Republic of Kazakhstan. Category A corresponds to 
the developed production reserves of subsurface water; category B – explored reserves; 
category C1 – the preliminarily assessed reserves. The production volumes of the current 
water intakes operating on the non-approved reserves were also considered.

Results and discussion

For the conditionally undisturbed period (prior to 1960), the volume of the subsurface 
water influx in the Aral Sea computed on the model was equal to 1.133 m3/s. The drain 
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from the Aral Sea occurred only to the Neogene-Quaternary water-bearing suite and was 
equal to 0.024 m3/s.

At the end of the epignostic period (2014), the Aral Sea split into the Big Aral Sea 
and the Small Aral Sea. For the Small Aral Sea, the influx from the Neogene-Quaternary 
water-bearing geological layers was equal to 0.165 m3/s and the one from the Upper Eocene 
water-bearing geological layers was 0.36 m3/s. Drains from the Small Aral Sea seeped to 
the Neogene-Quaternary water-bearing geological layers and to the Upper Eocene water- 
bearing geological layers and were equal to 0.016 and 0.0003 m3/s, respectively.

The cumulative influx from the water-bearing geological layers for the Big Aral Sea at 
the end of the epignostic period was equal to 1.525 m3/s. No drain from the Big Aral Sea 
occurred or was measured.

The cumulative influx in the Aral Sea depression at the end of the epignostic period is 
equal to 2.05 m3/s.

Figures 4 and 5 summarize the water levels variation charts assigned on the model for 
the Small Aral Sea and for the Big Aral Sea geological layers.

By the end of the forecast period (2044), the influx in the Small Aral Sea using the first 
option will occur only from the Neogene-Quaternary water-bearing geological layers and 
the Upper Eocene water-bearing geological layers, and it will be in the range of 0.48 m3/s. 
The drain will be equal to 0.017 m3/s. The cumulative influx from all the water-bearing 
geological layers for the Big Aral Sea will be 1279 m3/s. The cumulative subsurface drain 
in the Aral Sea will be equal to 1.76 m3/s.

At the end of the forecast period (2044), the influx in the Small Aral Sea from the 
Neogene-Quaternary water-bearing suite and the Upper Eocene water-bearing geological 
layers using the second option will likely be in the range of 0.291 m3/s, and its drain will 
be 0.044 m3/s. The cumulative influx from the water-bearing suites into the Big Aral Sea 
will be 1.27 m3/s, and the Upper Cretaceous water-bearing layer, which is one of the most 

Figure 4. variation chart of the water level in the Small aral Sea.
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water-abundant influxes, will yield 0.91 m3/s. No drain will occur. The cumulative subsurface 
drain in the Aral Sea will be equal to 1.52 m3/s.

Figures 6 and 7 present the resulting data for the subsurface water discharge in the Aral 
Sea based on the mathematical simulation technique. The charts demonstrate that the cumu-
lative discharge in the Aral Sea by the end of the prediction period increased to 2.05 m3/s, 
which is associated with considerable decrease of the Sea level as the result of its drying.

Figure 5. variation chart of the water level in the Big aral Sea.

Figure 6. variations of the subsurface water discharge in the aral Sea for the first forecast option.
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Conclusion

The simulation results allow us to conclude that, starting from 1960, the subsurface water 
in this territory has been significantly impacted by technogenic factors. The main impacts 
include a drastic reduction of the flow from the Syrdarya River into the Aral Sea and the 
nearly complete discontinuation of the Amudarya inflow into the Aral Sea. This has resulted 
in the desiccation of the Aral Sea. The intensive extraction of subsurface water from the 
multiple water-intake and unowned self-flowing wellbores is another negative impact. The 
cumulative water withdrawal in the analysed territory in 2014 is estimated to be 2500 
ths. m3/d or 29 m3/s. These technogenic impacts resulted in considerable hydrogeological 
changes, which influenced the movement of the subsurface and the surface water, and led 
to the reduction in the level of subsurface water.
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